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Abstract

Sketching has become a very effective tool to efficiently extract useful information from very large
inputs which are presented to an algorithm in various forms such as a turnstile stream or when the
data is partitioned arbitrarily among multiple servers. In this proposal, we describe the main paradigms
of computation with large datasets and how we obtain new efficient algorithms for a large variety of
problems using sketch-based techniques.

1 Introduction
In this era of very large datasets, extracting useful insights efficiently has become challenging. Existing
algorithms, many of which assume that data can be arbitrarily accessed and that run in super-linear time
have become untenable with growing input sizes. In addition to growing input sizes, another key challenge is
the way input to a problem is defined. For example, the input maybe arbitrarily partitioned across multiple
servers and we may want to solve a problem on the underlying input with algorithms that are communication
efficient. As another example, the input to a problemmaybe defined by a stream of items and we may want to
solve a problem under the constraint that there is not enough space to store all the items. We study algorithms
for various linear algebra problems when the dataset is defined in one of the following three ways:

1. Classic: In this setting, we are given access to the full input and want to obtain algorithms that compute
solutions as fast as possible. We assume that the input is an 𝑛 × 𝑑 matrix𝐴. The rows of the matrix𝐴
are usually called the data points and 𝑑 , the number of columns in matrix𝐴, is called the dimension of
the dataset. The aim is to obtain algorithms that run in near-linear time in nnz(𝐴), which denotes the
number of non-zero entries in the matrix𝐴.

2. Streaming: In this setting, the input to a problem is implicitly defined by a stream of updates. Again,
we define the input to be an 𝑛 × 𝑑 matrix𝐴. In the row arrival model of streaming, each row of the
matrix𝐴 is revealed one after another and we assume that the number of rows 𝑛 is too large to store
the full matrix𝐴. We want algorithms that (i) use sublinear space in the number of rows 𝑛, (ii) process
the rows as they are received, and (iii) compute a solution to a problem on the underlying matrix𝐴 at
the end of processing the stream.
In the more general turnstile streaming setting, we assume that the underlying matrix𝐴 is implicitly
defined by a stream of additive updates to its entries. An update of the form ((𝑖, 𝑗), Δ) replaces the
(𝑖, 𝑗)-th entry𝐴𝑖, 𝑗 with𝐴𝑖, 𝑗 + Δ. Here Δ is allowed to be negative as well. We assume that both the
number of rows𝑛 in the matrix and the number of updates is large and therefore desire algorithms that
use sublinear space in 𝑛, process each update ((𝑖, 𝑗),Δ) as they are received, and compute a solution
on the matrix𝐴 at the end of the stream.
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3. Distributed: Here we assume that there are 𝑠 servers that each store a part of the input. Specifically,
the 𝑗-th server holds an 𝑛 × 𝑑 matrix𝐴( 𝑗) and input to a problem is defined as𝐴 = 𝐴(1) + · · · +𝐴(𝑠).
We want algorithms in this setting, that require small amount of overall communication, compared to
the size of the underlying matrix𝐴, and compute a solution to a problem on input𝐴.
In the more restrictive row-partition model of distributed computation, we assume that there are 𝑠
servers with the 𝑗-th server holding an 𝑛 𝑗 × 𝑑 matrix𝐴( 𝑗) and input to the problem is defined by the
matrix𝐴 obtained by concatenating the matrices𝐴(1), . . . , 𝐴(𝑠).

Each of the above settings presents different challenges with regard to the types of “efficiency” we care about.
We define five complexity measures with one or more of them being relevant to each of the above settings.

• Time Complexity: In the classic setting, time complexity simply refers to the total amount of time
required by an algorithm to compute a solution to a problem on the given dataset.
In the streaming setting, we are concerned with the amount of time required by an algorithm to process
an update to the underlying matrix. We call this the update time of a streaming algorithm. Note that
having a small update time is crucial to be able to process a stream of updates at a high throughput.
Another complexity measure related to time in the streaming setting is the amount of time required
for a streaming algorithm to output a solution at the end of processing the stream.

• Space Complexity: In the streaming setting, we assume that we do not have enough space to store
the underlying matrix𝐴 and hence a streaming algorithm operates in a memory-constrained setting.
The space complexity of a streaming algorithm is the amount of space (in bits) it needs to process the
stream of updates to the underlying matrix and output a solution at the end of the stream. We want
algorithms that have as low a space complexity as possible.

• Randomness Complexity: Algorithms in all the above settings are often randomized and use a large
number of random bits as part of the algorithm which raises the question how these bits are obtained.
Thus it is important for an algorithm to use as few randombits as possiblewhilemeeting other efficiency
measures.
More importantly though, in the streaming setting, an important question is how the large number of
random bits needed by an algorithm are stored since the algorithms operate in a memory-constrained
setting. The usual techniques here include replacing full randomness with 𝑘-wise independent hash
functions for some small value of 𝑘 or use Pseudorandom Generators (PRGs), that fool small space
algorithms, such as Nisan’s PRG [Nis90].

• Query Complexity: In many settings, specific ways of interacting with the underlying matrix can be
much faster and simpler than materializing the entire matrix. Some ways of interacting with a matrix
are (i) querying specific entries, or (ii) querying for the result of multiplying the matrix with a specific
vector or more generally (iii) applying a function, chosen from a restricted class such as the set of all
linear functions, to the matrix and obtaining the result.
In this setting, an algorithm needs to minimize the amount of queries it makes since it is directly
related to the amount of time required to run such an algorithm. Thus given a class of queries that one
is allowed, the query complexity of an algorithm is the number of such queries it performs to obtain a
solution to the given problem. Again, we want algorithms that perform as few queries as possible.

• Communication Complexity: In the distributed setting discussed above, the input to a problem can be
arbitrarily partitioned among 𝑠 servers. Assuming there is a coordinator that can communicate with
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all the servers, the communication complexity of a protocol is the number of bits exchanged between
the coordinator and the 𝑠 servers to solve the problem.

In the following sections, we first describe a broad classification of techniques that have been used to
obtain fast algorithms to problems in each of the above settings. Then, we discuss some of the algorithms we
obtain in each of the “Classic”, “Streaming” and “Distributed” settings and how each algorithm is efficient
with respect to one or more of the above complexity measures.

2 Classification of Techniques
In the randomized linear algebra literature, there have majorly been two different techniques to obtain
efficient algorithms in the above described settings : (i) Linear sketching and (ii) Coresets. We will briefly
describe these two methods at a high level. In this proposal, we refer to these techniques jointly as sketching.

2.1 Linear Sketching

Linear sketching broadly refers to the technique of applying an oblivious randomized linear transformation to
decrease the dimensionality of the data or decrease the number of data points or both. The smaller dataset
obtained after applying suitable transformations to the original dataset is usually termed as a “linear sketch”
(or just a sketch). At a high level, a sketching-based algorithm has the following structure: First the algorithm
computes a sketch of the entire dataset using an appropriate transformation so that the sketch captures
enough structure of the dataset that is necessary to solve a problem and then using the sketch, the algorithm
computes an (approximate) solution to the given problem on the original dataset.

To obtain fast sketch-based algorithms, it is necessary, as a first step that we can compute a sketch of the
dataset quickly. After obtaining the sketch, we need an algorithm that runs quickly on the sketch to obtain a
solution for the original problem. A proxy for how fast we can run an algorithm on the sketch is the so-called
size of the sketch i.e., the output dimension of the randomized transformation. Thus we need to carefully
balance both the time-to-sketch and size-of-the-sketch to obtain fast algorithms using this paradigm.

Sarlós [Sar06] first observed that the Fast Johnson Lindenstrauss Transformation of Ailon and Chazelle
[AC09] can be used to compute a sketch of an 𝑛 × 𝑑 matrix𝐴 in𝑂 (𝑛𝑑 log𝑛) time and showed that this sketch
can be used to approximately solve problems such as the Frobenius norm Low Rank Approximation of𝐴 and
the ℓ2 linear regression problem with𝐴 as the coefficient matrix. Later, Clarkson and Woodruff [CW17] gave a
construction of a sketch that can be computed in nnz(𝐴) time and obtained input-sparsity time algorithms
for these problems. Thereafter, numerous works have obtained fast algorithms for a variety of problems using
the sketch-and-solve paradigm.

Apart from solving problems in the classic setting, linear sketching is a major technique to obtain efficient
algorithms in the streaming and distributed settings as well. We note that the linear sketch can be efficiently1
updated when a coordinate of the underlying matrix𝐴 gets updated. This observation has lead to turnstile
streaming algorithms for a variety of problems such as moment estimation [And17, KNPW11], heavy hitters
[CCFC02], sampling coordinates from a variety of distributions [JST11, JW21] and many more.

Linear sketches are useful even in the distributed setting to obtain communication efficient algorithms.
Recall that each server in this setting holds a matrix𝐴(1), . . . , 𝐴(𝑠) respectively and if the server 𝑗 sends
a linear sketch of the matrix 𝐴( 𝑗) to the coordinator, then the coordinator can obtain a sketch for the
matrix𝐴 = 𝐴(1) + · · · + 𝐴( 𝑗) by simply adding up the sketches. When the sketches are small, this leads to
communication-efficient algorithms in the coordinator model. This technique was used to solve the low rank
approximation problem in the coordinator model [KVW14].

1In time independent of the size of the dataset.
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2.2 Coresets

Coresets usually denote a weighted subset of the original data points such that solving an appropriately
modified version of the original problem on this weighted subset leads to an approximate solution for the
original problem. Again, to obtain fast algorithms using coresets, it is important that we are (i) able to compute
the coreset quickly and (ii) the size of the coreset is small so that the problem can be solved quickly on the
coreset.

In general, coresets are constructed using importance sampling of the datapoints where the importance of
a point depends on the problem being solved and on how the datapoint interacts with rest of the points in
the dataset. Sensitivity [FL11] has emerged as a way of assigning importance to each point in the dataset and
sensitivities have been used to compute small coresets for a number of problems such as clustering [VX12],
regression [DMM06], etc.

We remark that while the sensitivities have been used to obtain coreset constructions for many problems,
it is not always the case that they are the bestmeasure of importance. For example, in the case of ℓ𝑝 subspace
embeddings, Cohen and Peng [CP15] show that importance sampling of rows using ℓ𝑝 Lewis weights lead to
coresets of smaller size as compared to coresets computed using the ℓ𝑝 sensitivities.

Coresets have been used to obtain efficient algorithms for many problems in all of the classic, streaming
and distributed settings. In the classic setting, coresets are often used to reduce the size of the dataset to
make searching for brute force solutions faster for problems such as clustering (see [CASS21] and references
therein).

In the row-arrival model of streaming, coresets for many different problems can be obtained using the
“merge-and-reduce” framework [BS80]. Using this framework, any offline coreset construction algorithm can
be converted into a streaming coreset construction in the row arrival model with only a space blow up of
logarithmic factors in the length of the stream under certain conditions.

In the row-partition model of distributed computation, each server can independently compute a coreset
for their datapoints and send it to the coordinator. In many constructions of coresets, simply the union of all
the coresets is a coreset for the entire dataset.

3 The Classic Setting
In the classic setting, we describe our results for five different problems: (i) construction of oblivious subspace
embeddings (OSE), which have been the source of many fast algorithms, (ii) dimensionality reduction for
approximating sum-of-distances, which can be used to approximate the sum of distances of the given 𝑛
datapoints to any 𝑘-dimensional object, (iii) a fast approximation algorithm for ridge regression, (iv) an
input-sparsity time algorithm for reduced-rank regression with operator norm error and (v) a lower bound
on the query complexity of low rank approximation algorithms.

3.1 Fast Oblivious Subspace Embeddings

A random matrix 𝑺 with 𝑛 columns is called an (𝛼, 𝛿) Oblivious Subspace Embedding (OSE) for 𝑑-dimensional
subspaces ofℝ𝑛 if

Pr
𝑺
[for all 𝑥 ∈𝑊 , ∥𝑥 ∥2 ≤ ∥𝑺𝑥 ∥2 ≤ 𝛼 ∥𝑥 ∥2] ≥ 1 − 𝛿

for all 𝑘-dimensional subspaces𝑊 ⊆ ℝ𝑛 . When 𝛿 is a small constant, we refer to 𝑺 as an 𝛼-OSE for simplicity.
We call 𝛼 to be the distortion of the subspace embedding 𝑺 . Instantiating𝑊 to be the column space of a given
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𝑛 × 𝑑 matrix𝐴, we obtain that with probability ≥ 1 − 𝛿 over the random matrix 𝑺 , for all 𝑥 ∈ ℝ𝑑 ,
∥𝐴𝑥 ∥2 ≤ ∥𝑺𝐴𝑥 ∥2 ≤ 𝛼 ∥𝐴𝑥 ∥2.

The concept of subspace embeddings was introduced by Sarlós [Sar06] who showed that it can be used to
obtain fast algorithms for linear regression and low rank approximation, when 𝑛 ≫ 𝑑 .

We can show, using a net argument, that if the entries of 𝑺 are independent Gaussian random variables and
if 𝑺 has𝑚 = 𝑂 (𝑑) rows, then 𝑺 is an 𝛼-OSE for a constant 𝛼 . But many applications of OSEs to linear algebra
require that we are able to compute the matrix 𝑺 · 𝐴. If 𝑺 is a dense Gaussian matrix, then unfortunately,
it requiresmin(𝑛𝑑𝜔−1, nnz(𝐴) · 𝑑) time to compute the matrix 𝑺 · 𝐴, where𝜔 is the matrix multiplication
constant, which is quite slow.

To remedy this problem, Sarlós used a structured Johsnon-Lindenstrauss Transform of Ailon and Chazelle
[AC09] and showed that there is a construction of an 𝛼-OSE 𝑺 with𝑚 = 𝑂 (𝑑 log𝑑) rows for a constant 𝛼
and that given any 𝑛 × 𝑑 matrix, we can compute 𝑺 · 𝐴 in𝑂 (𝑛𝑑 log𝑛) time, which can be much faster than
multiplying𝐴 with an arbitrary dense matrix with𝑚 rows.

Later, Tropp [Tro11] simplified this construction and gave tighter bounds on the number of rows𝑚
required to obtain an OSE. But a major disadvantage of this line of work is that we cannot make use of the
sparsity of matrix𝐴. In many real-world datasets, each row of the matrix𝐴, which corresponds to a datapoint,
is quite sparse and the matrix𝐴 has much fewer than 𝑛 · 𝑑 nonzero entries. It is often the case that 𝑛 and 𝑑
themselves are so large that even algorithms that requireΘ(𝑛 · 𝑑) time are too slow and hence algorithms
using sketches from this line of work can be impractical in those cases.

Clarkson and Woodruff [CW17] gave the first construction of an OSE 𝑺 which can make use of the sparsity
of 𝐴 to compute the matrix 𝑺 · 𝐴 faster than in 𝑂 (𝑛𝑑 log𝑛) time. Their construction of an 𝛼-OSE 𝑺 for a
constant𝛼 has𝑚 = 𝑂 (𝑑2) rows and has an additional property that each column of 𝑺 has exactly one non-zero
coordinate. Thus the matrix 𝑺 ·𝐴 can be computed in𝑂 (nnz(𝐴)) time with the caveat that the OSE has much
larger number of rows than the dense Gaussian construction described above which has only𝑚 = 𝑂 (𝑑) rows.

Nelson and Nguyên [NN13] later generalized this construction and showed that for any parameter 𝛾 > 1,
there is an 𝛼-OSE 𝑺 for a constant 𝛼 , with𝑚 = 𝑂 (𝑑1+𝛾 log(𝑑)) rows and that 𝑺 · 𝐴 can be computed in
𝑂 (𝛾−1nnz(𝐴)) time. A combination of these constructions can be used to obtain an 𝛼-OSE 𝑺 with𝑚 =

𝑂 (𝑑 · polylog(𝑑)) rows, for a constant 𝛼 , such that for any 𝛾 > 0, the matrix 𝑺 · 𝐴 can be computed in time
𝑂 (𝛾−1nnz(𝐴) + 𝑑2+𝛾 polylog(𝑑)) .

This was the status quo before our work [CCKW22]. There was no construction of a subspace embedding that
can be applied in𝑂 (𝛾−1nnz(𝐴) + 𝑑2+𝛾 polylog(𝑑)) time and with𝑚 = 𝑜 (𝑑 log𝑑) rows. In our work, we gave
the first construction of an OSEwith𝑚 = 𝑂 (𝑑 ·poly(log log𝑑)) rows and a distortion𝛼 = exp(poly(log log𝑑))
such that the matrix 𝑺 · 𝐴 can be computed in

𝑂 (𝛾−1nnz(𝐴) + 𝑑2+𝛾 polylog(𝑑))
time. This led to the first algorithms for many problems, such as basis finding, that run in time𝑂 (nnz(𝐴) +
𝑑𝜔 (poly(log log𝑑))) making steps towards completely removing the poly(log𝑑) multiplicative factor to the
𝑑𝜔 term plaguing many results before our work. We will briefly summarize our main result in the following
theorem.
Theorem 3.1. Given a parameter𝛾 > 0, there is an exp(poly(log log𝑑))-OSE 𝑺 with𝑚 = 𝑂 (𝑑 · poly(log log𝑑))
rows such that given an𝑛 × 𝑑 matrix𝐴, we can compute the matrix 𝑺 · 𝐴 in

𝑂 (𝛾−1nnz(𝐴) + 𝑑2+𝛾 poly(log𝑑))
time.
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Application Time Complexity
(1 + 𝜀) Subspace Embeddings 𝛾−1nnz(𝐴) + 𝑑𝜔 poly(log log𝑑) + 𝑑2+𝑜 (1) (𝜀−3 + 𝜀−2𝑛𝛾+𝑜 (1) )

(1 + 𝜀)-approximate Linear Regression 𝛾−1nnz(𝐴) + 𝑑𝜔 poly(log log𝑑) + 𝜀−2𝑛𝛾+𝑜 (1)𝑑2+𝑜 (1)
Independent Row Selection (rank 𝑘) 𝑂 (nnz(𝐴) + 𝑘𝜔 poly(log log𝑘))

Table 1: Applications of the Oblivious Subspace Embedding Construction

We use this subspace embedding construction to obtain algorithms for various problems. We list our
results in Table 1. Our crucial observation which led to this result is that when all the unit vectors in a subspace
have large ℓ1 norms, then a very sparse sign matrix satisfies the OSE property. We then use a deterministic
embedding construction of Indyk [Ind07] to show that any 𝑑 dimensional subspace ofℝ𝑂 (𝑑 polylog(𝑑 ) ) can be
linearly mapped to such a flat subspace without blowing up the dimension by a lot.

This result has been recently improved in [CDDR23] which obtained the first construction of a sparse
subspace embedding with𝑂 (𝑑) rows.

3.2 Dimensionality Reduction for approximating Sum-of-Distances

Consider the following simple problem: Given 𝑛 points 𝑥1, . . . , 𝑥𝑛 ∈ ℝ𝑑 and a shape 𝑆 ⊆ ℝ𝑑 , we want to
approximate ∑︁

𝑖

𝑑 (𝑥𝑖 , 𝑆)

where 𝑑 (𝑥, 𝑆) is defined as inf𝑦∈𝑆 ∥𝑥 − 𝑦∥2. When 𝑆 is a set of 𝑘 points, the above quantity is just the 𝑘-
median cost with 𝑆 as the centers and when 𝑆 is a 𝑘-dimensional subspace, then the quantity is the “robust”
subspace approximation cost. For this problem, Sohler and Woodruff [SW18] gave a dimensionality reduction
by producing a subspace 𝑃 of poly(𝑘/𝜀) dimensions such that for any 𝑆 ⊆ ℝ𝑑 with dim(span(𝑆)) ≤ 𝑘 , then∑︁

𝑖∈[𝑛]

√︁
𝑑 (𝑥𝑖 , 𝑃)2 + 𝑑 (ℙ𝑃𝑥𝑖 , 𝑆)2 = (1 ± 𝜀)

∑︁
𝑖∈[𝑛]

𝑑 (𝑥𝑖 , 𝑆)

where ℙ𝑃 denotes the projection matrix on to subspace 𝑃 . The above relation shows that one only needs the
projections of 𝑥𝑖s onto this special subspace 𝑃 and the distance from 𝑥𝑖 to 𝑃 to be able to approximate the
sum-of-distances to an arbitrary 𝑘-dimensional shape. Thus, we only need to store 𝑛 · poly(𝑘/𝜀) parameters
instead of the 𝑛 · 𝑑 parameters required to store the exact values of 𝑥𝑖s, to be able to approximate the sum-
of-distances. Unfortunately, the construction in [SW18] takes time exponential in 𝑘/𝜀. We [FKW21] give an
improved algorithm that computes such a subspace 𝑃 in time𝑂 (nnz(𝐴)/𝜀2 + (𝑛 + 𝑑)poly(𝑘/𝜀)) and the
reduced dimension points can be used to approximate the sum of distances of the original 𝑛 points to any 𝑘
dimensional shape. Our algorithm is iterative and in each iteration solves a subspace approximation problem
using linear sketching techniques to reduce the size of the problem.

The dimensionality reduction procedure also lets us compute small coresets for many “sum-of-distances”
problems. We summarize our main result in the following theorem.
Theorem 3.2. Given an𝑛×𝑑 matrix𝐴, a rank parameter𝑘 and an accuracy parameter 𝜀 , there is an iterative algorithm
that runs in time𝑂 (nnz(𝐴)/𝜀2 + (𝑛 + 𝑑) · poly(𝑘/𝜀)) and outputs a subspace 𝑃 of dimension at most poly(𝑘/𝜀)
such that with probability ≥ 9/10, for any shape 𝑆 with dim(span(𝑆)) ≤ 𝑘 ,∑︁

𝑖∈[𝑛]

√︁
𝑑 (𝐴𝑖,∗, 𝑃)2 + 𝑑 (ℙ𝑃 · 𝐴𝑖,∗, 𝑆)2 = (1 ± 𝜀)

∑︁
𝑖∈[𝑛]

𝑑 (𝐴𝑖,∗, 𝑆),
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where𝐴𝑖,∗ ∈ ℝ𝑑 denotes the 𝑖-th row of the matrix𝐴 andℙ𝑃 is the orthogonal projection matrix onto the subspace 𝑃 .

3.3 Ridge Regression

Given a matrix𝐴 ∈ ℝ𝑛×𝑑 and a vector 𝑏 ∈ ℝ𝑑 , the ridge regression problem is defined as:
min
𝑥
∥𝐴𝑥 − 𝑏∥22 + 𝜆∥𝑥 ∥22

where 𝜆 > 0 is a regularization parameter. When 𝑛 ≥ 𝑑 , then we say we are in the over-determined case and
when 𝑛 < 𝑑 , we say we are in the under-determined case. We study fast algorithms for computing a vector
𝑥 ∈ ℝ𝑑 that satisfies

∥𝐴𝑥 − 𝑏∥22 + 𝜆∥𝑥 ∥22 ≤ (1 + 𝜀)min
𝑥
(∥𝐴𝑥 − 𝑏∥22 + 𝜆∥𝑥 ∥22) .

In the ridge regression objective above, as we increase the value of 𝜆, the importance of the design matrix
decreases, as in, when 𝜆 is large enough, setting 𝑥 = 0 without considering 𝐴 and 𝑏 would be a good
solution. Thus the “effective dimension” of the problem decreases with increasing values of 𝜆. To capture this
phenomenon, we define statistical dimension sd𝜆 as

sd𝜆 B
min(𝑛,𝑑 )∑︁

𝑖=1

𝜎2𝑖
𝜎2
𝑖
+ 𝜆

where 𝜎𝑖 is the 𝑖-th singular value of the matrix 𝐴. In general, we would like algorithms for solving ridge
regression to have small running times when sd𝜆 is small since we already know that 𝑥 = 0 is a good solution.

3.3.1 Fast Algorithms in the Under-determined Case

We [KW22] study algorithms for Ridge Regression in the underdetermined case. Earlier algorithms [CYD18]
used Oblivious Subspace Embeddings with distortion 1 + 𝜀 to obtain a solution with the above guarantee.
We show that a sketch with only the weaker 𝜀-Approximate Matrix Multiplication (AMM) guarantee and an
Oblivious Subspace Embedding guarantee with a constant distortion is sufficient to solve the ridge regression
problem to a 1 + 𝜀 factor.
Definition 3.3 (AMM). A sketch 𝑺 with 𝑛 columns has the (𝜀, 𝛿)-AMM property if given any two matrices𝐴
and 𝐵 each with 𝑛 rows,

Pr
𝑺
[∥(𝑺𝐴)T(𝑺𝐵) −𝐴T𝐵∥F ≤ 𝜀∥𝐴∥F∥𝐵∥F] ≥ 1 − 𝛿.

Our observation that only constant distortion OSEswhich additionally satisfy AMMguarantees is sufficient
to solve ridge regression leads to faster algorithms in some parameter regimes compared to [CYD18]. In this
work, we also give a tight lower bound on sizes of the sketches that have AMM guarantee.
Theorem 3.4 (AMM lowerbound). Given an accuracy parameter 𝜀 and an integer𝑛, any randomized sketching matrix
𝑺 with𝑛 columns that satisfies

Pr
𝑺
[∥(𝑺𝐴)T𝑺𝐵 −𝐴T𝐵∥F ≤ 𝜀∥𝐴∥F∥𝐵∥F] ≥ 9/10,

for all matrices𝐴, 𝐵 with𝑛 rows, must have𝑚 = Ω(min(𝑛, 1/𝜀2)) rows.
We note that the above lower bound is tight up to constant factors since the CountSketch matrix with

𝑚 = 𝑂 (1/𝜀2) rows satisfies the 𝜀-AMM guarantee.
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3.3.2 Optimal Deterministic Coresets

In [KW20], we study the problem of constructing coresets for the ridge regression problem. Specifically, given
an instance of the ridge regression problem (𝐴,𝑏, 𝜆), we want to compute a set 𝑆 ⊆ [𝑛] and weights𝑤𝑖 for
𝑖 ∈ 𝑆 such that the solution to the problem

min
𝑥

∑︁
𝑖∈𝑆

𝑤𝑖 (⟨𝐴𝑖,∗, 𝑥⟩ − 𝑏)2 + 𝜆∥𝑥 ∥22

is a 1 + 𝜀 approximation to the ridge regression problem. We show that a subset 𝑆 with size |𝑆 | = 𝑂 (sd𝜆/𝜀)
that satisfies the desired coreset property can be computed using a deterministic algorithm of [CNW15]. We
additionally show that this bound cannot be improved in terms of statistical dimension by exhibiting an
instance for every 𝜀 and 𝜆 ≤ 𝑂 (1/𝜀) which requires that any such coreset have Ω(sd𝜆/𝜀) rows.

Using our deterministic coreset, we also give communication efficient algorithms for ridge regression in
the row-partition model of distributed computation.

3.4 Reduced-Rank Regression with Operator Norm Error

In the same vein as above sketch-based algorithms, we obtain a fast algorithm for approximately solving

min
rank-𝑘 𝑋

∥𝐴𝑋 − 𝐵∥2.

Note that the usual multi-response regression problem measures the error in terms of the Frobenius norm
and has no restriction on the rank of the coefficient matrix. In the version of the problem we study, we put
a rank restriction to increase interpretability of the coefficient matrix and also use operator norm of the
residual matrix to measure the error which in some cases can capture more structure than Frobenius norm.

These new restrictions combined with a lack of “Pythagorean Theorem” for operator norm makes the
problem harder to solve. We do not even know of a closed form solution to this problem. We use an existential
criterion of [SR12] for there to exist a solution to the problem with ∥𝐴𝑋 − 𝐵∥2 ≤ 𝛽 for a given 𝛽 and then
show that a rank-𝑘 approximation for a specific matrix in spectral norm gives a solution to the reduced-rank
regression problem.

To obtain a fast algorithm, we also show that the Block-Krylov iteration algorithm of [MM15] works even
when the matrix-vector products have a certain amount of error. We summarize our result in the following
theorem:
Theorem 3.5. Given an𝑛 × 𝑑 matrix𝐴, an𝑛 × 𝑑 ′ matrix 𝐵, an accuracy parameter 𝜀 and a rank parameter𝑘 , there is
an algorithm that runs in time

𝑂

((
nnz(𝐴) · 𝑘

𝜀3/2
+ nnz(𝐵) · 𝑘

𝜀
+ 𝑑

2𝑘
𝜀3/2

)
· polylog(𝜅 (𝐵), 𝑛, 𝑑, 1/𝜀) + 𝑑𝜔

)
where𝜅 (𝐵) = 𝜎1(𝐵)/𝜎𝑘+1(𝐵) is the rank-𝑘 condition number of the matrix 𝐵.

3.5 Query Complexity of Low Rank Approximation

As described in the introduction, very often it is much more efficient to interact with the underlying matrix in
specific ways than it is to assume arbitrary access to the entries of the matrix. For examples, suppose we are
given access to an 𝑛 × 𝑛 matrix𝐴. Given a vector 𝑥 and integer 𝑞 ≥ 1, we can compute𝐴𝑞𝑥 using 𝑞 adaptive
matrix-vector products whereas computing the entire matrix𝐴𝑞 is inefficient. Thus given the matrix𝐴, we
have “efficient” matrix-vector product query access to𝐴𝑞 . Matrix-vector products model a specific set of
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linear functions on matrices. We can indeed allow for more general linear measurements of matrices and
study the query complexity in those models.

Candés and Plan [CP11] study the number of noisy linear measurements required to extract an underlying
𝑛×𝑛 low rankmatrix𝐴. Note that a rank𝑘 matrix𝑛×𝑛matrix𝐴 can be described using only𝑂 (𝑛𝑘) parameters.
They give algorithms with query complexity that increases with the noise level in the measurements. At a
certain large enough noise level, they show that their algorithm requires Ω(𝑛2) linear measurements which
amounts to essentially reading all the entries of the matrix𝐴 and hence could be inefficient to implement.
The algorithms they study are non-adaptive, as in, they pre-specify all the linear measurements up front
and reconstruct the matrix using the received responses. Hence a natural question is if adaptivity helps us
reconstruct the matrix with fewer number of linear measurements.

Indeed, we can show that using the power method, we can reconstruct the matrix using a total of𝑂 (𝑛)
linear measurements and𝑂 (log𝑛) rounds of adaptivity. But are Ω(log𝑛) rounds of measurements required
to avoid essentially reading the whole matrix? Unfortunately, this turns out to be (almost) true. In [KW23],
we showed that any algorithm that runs for fewer than 𝑜 (log𝑛/log log𝑛) adaptive rounds, must use a total
of Ω(𝑛2) linear measurements and therefore essentially has to read all the entries of the matrix.

Our lower bound is proved using Bayes risk lower bounds. We define a distribution over 𝑛 × 𝑛 matrices
such that any deterministic algorithm which uses 𝑛2−𝛽 linear measurements in each round does not learn
enough information in 𝑜 (log𝑛/log log𝑛) rounds to output a good rank-𝑘 approximation. By Yao’s lemma, it
then follows that there is no randomized algorithm that outputs a low rank approximation for every input.
Our input distribution is simply 𝑮 + (𝛼/√𝑛)∑𝑘

𝑖=1 𝒖𝑖𝒗
T
𝑖 where 𝑮 is an𝑛×𝑛matrix with independent Gaussian

entries, 𝒖𝑖 , 𝒗𝑖 for 𝑖 = 1, . . . , 𝑘 are 𝑛-dimensional vectors with independent Gaussian entries as well, and 𝛼 is a
large enough constant.

Using this result we also show that general linearmeasurements are notmore powerful thanmatrix-vector
products for problems such as low rank approximation, eigenvalue approximation etc.

3.5.1 Next Steps

An important open problem I’d like to study over the next fewmonths is the lower bound on query complexity
to obtain a spectral norm low rank approximation of the matrix𝐴 when we are able to compute arbitrary
matrix-vector products. Concretely, let𝐴 be an 𝑛 × 𝑑 matrix and that we can query an arbitrary 𝑣 ∈ ℝ𝑑 or
𝑢 ∈ ℝ𝑛 and receive𝐴𝑣 or𝑢T𝐴 respectively. Given a rank parameter 𝑘 , that question I’d like to study is a lower
bound on the number of adaptive queries necessary to output a rank-𝑘 matrix 𝐵 such that

∥𝐴 − 𝐵∥2 ≤ (1 + 𝜀) min
rank-𝑘 𝑋

∥𝐴 − 𝑋 ∥2.

We can show that minrank-𝑘 𝑋 ∥𝐴 − 𝑋 ∥2 = 𝜎𝑘+1(𝐴), the (𝑘 + 1)-th singular value of 𝐴. The Block Krylov
iteration algorithm of Musco and Musco [MM15] and the LazySVD algorithm of Allen-Zhu and Li [AZL16] both
require𝑂 (𝑘 polylog𝑛/√𝜀) adaptive matrix-vector products and the main question is if Ω(𝑘/√𝜀) matrix-
vector products are required. Simchowitz et al., [SEAR18] show that for a related problem, Ω(𝑘/√𝜀) matrix-
vector products are necessary but their proof does not directly carry over to the spectral norm Low Rank
Approximation. Recently, Bakshi and Narayanan [BN23] showed that Ω(1/√𝜀) matrix-vector products are
necessary to output a rank-1 approximation of matrix𝐴 but do not have a lower bound for arbitrary 𝑘 . Hence
we ask:

“Are Ω(𝑘/√𝜀) matrix-vector products necessary to output a 1 + 𝜀 approximate rank-𝑘 approximation to the
matrix𝐴 in Spectral Norm?”
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4 The Streaming Setting

4.1 Turnstile Streaming

As we mentioned in the introduction, in the turnstile streaming model, the underlying matrix𝐴 receives
updates of the form ((𝑖, 𝑗),Δ) and on receiving such an update, we update the (𝑖, 𝑗)-th entry as𝐴𝑖, 𝑗 ← 𝐴𝑖, 𝑗 +Δ.
The goal of a streaming algorithm is to process the stream of updates in as small space as possible and at the
end of the stream output a solution to a problem on the underlying matrix.

There has been a lot of work studying optimal space bounds for various problems when the underlying
object is an 𝑛-dimensional vector 𝑥 receiving updates of the form (𝑖,Δ). For the problem of approximating
𝐹𝑘 (𝑥) =

∑𝑛
𝑖=1 |𝑥𝑖 |𝑘 , up to constant factors, an Ω(𝑛1−2/𝑘 ) bits lower bound was shown by [BYJKS04] for 𝑘 > 2

and a matching upper bound (up to polylogarithmic factors) was given by [IW05]. Much later, Andoni [And17]
also gave a simple linear sketch based algorithm to approximate 𝐹𝑘 (𝑥) using𝑂 (𝑛1−2/𝑘 ) bits of space.

When 𝑘 ≤ 2, a series of works ending with [KNW10] give a turnstile streaming algorithm that uses
𝑂 (𝜀−2 log𝑛) bits to approximate 𝐹𝑘 (𝑥) up to 1±𝜀 factors. They also show thatΩ(𝜀−2 log𝑛) bits are necessary
thus completely resolving the space complexity of estimating 𝐹𝑘 (𝑥) for 𝑘 ≤ 2.

While the space complexity of estimating 𝐹𝑘 (𝑥) in a stream has been resolved, unfortunately the up-
date time of these space efficient algorithms is quite large. Andoni’s algorithm for estimating 𝐹𝑘 (𝑥) for
𝑘 > 2 uses a pseudorandom generator of Nisan and Zuckerman [NZ96] to achieve a space complexity of
𝑂 (𝑛1−2/𝑘 poly(log𝑛)) bits and therefore has an update time of poly(𝑛) which makes the algorithm impracti-
cal. For 𝑘 ≤ 2, the algorithm of [KNW10] has an update time of poly(1/𝜀) in the WordRAM model. A later
work [KNPW11] gave a new algorithm that still uses the optimal𝑂 (𝜀−2 log𝑛) bits but has an improved update
time of𝑂 (log2 1/𝜀 log log 1/𝜀) in the WordRAMmodel with a word size𝑂 (log𝑛).

As we noted before, algorithms that have a small update time are necessary to be able to handle high-
throughput streams. Thus the main question is to obtain space-optimal algorithms that also have a small
update time.

To explain why the update time of these algorithms is large, we will first give the simple recipe a large
number of streaming algorithms follow. First the streaming algorithms define a randomized sketching matrix
𝑺 with 𝑑 columns. Each of the columns of 𝑺 is drawn independently from an appropriate distribution. The
streaming algorithm essentially maintains the value of 𝑦 = 𝑺𝑥 when the vector 𝑥 is being updated in the
stream as follows: when the vector 𝑥 gets an update (𝑖,Δ), the streaming algorithm retrieves 𝑺∗,𝑖 , the 𝑖-th
column of 𝑺 and updates𝑦 ← 𝑦 + 𝑺∗,𝑖 · Δ. Note that this will ensure that at the end of processing the stream
𝑦 = 𝑺𝑥 where 𝑥 is the final value of the underlying vector. Then the algorithm uses the vector𝑦 to output a
solution to the problem it is trying to solve.

In the above recipe, the streaming algorithmneeds to be able to retrieve any column of thematrix 𝑺 . As the
columns are all independently sampled, the algorithms thus require Ω(𝑛) bits of space. There have majorly
been two ways to address this problem: (i) Instead of sampling the columns of 𝑺 independently, use a 𝑡-wise
independent hash function, for an appropriate value of 𝑡 , to define the matrix 𝑺 or (ii) Use a pseudorandom
generator (PRG) that fools small-space algorithms to define the matrix 𝑺 and only store the “seed” for the
pseudorandom generator so that the any column of 𝑺 can be generated on demand. [KNW10, KNPW11] use
the first route whereas [And17] uses the second route, which was first suggested by Indyk [Ind06]. When
the amount of “independence”, 𝑡 , required is large, the hash functions drawn from 𝑡-wise independent
hash families are slow to evaluate. Similarly, when we are trying to “fool” algorithms using Pseudorandom
generators, either the hash function have to be evaluated on large inputs or many hash functions have to be
evaluated sequentially.

In ourwork [KPTW23],we generalize the construction ofNisan’s PRG [Nis90] and give a newpseudorandom
generator which we call HashPRG that has a space-vs-time trade-off, using which we can obtain fast update
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times by using more space. Our construction additionally has a symmetry property that lets us derandomize
the guarantees Minton and Price [MP14] give for a fully random CountSketch data structure. Using HashPRG
and opening up the analysis of the algorithms of Andoni [And17], we obtain a constant factor 𝐹𝑘 approximation
algorithm for 𝑘 > 2 that uses𝑂 (𝑛1−2/𝑘 ) bits of space and has an𝑂 (1) update time in the Word RAMmodel.

Similarly, for 𝑘 < 2 and 𝜀 < 1/𝑛𝑐 , we obtain an algorithm based on [KNPW11] to approximate 𝐹𝑘 (𝑥) up
to a 1 ± 𝜀 factor using the optimal𝑂 (𝜀−2 log𝑛) bits of space and an update time of𝑂 (log𝑛) in the Word RAM
model. We also obtain algorithms with fast update times for other problems such as for estimating ∥𝑥 ∥∞ in
this paper. We summarize some of our results in the following theorem:
Theorem 4.1. Suppose that a vector 𝑥 ∈ ℝ𝑛 initialized to 0 receives the updates (𝑖1,Δ1), . . . , (𝑖𝑡 ,Δ𝑡 ) and suppose
that the number of updates 𝑡 ≤ poly(𝑛) and |Δ 𝑗 | ≤ poly(𝑛) for all 𝑗 . On a WordRAM machine with a word size of
𝑂 (log𝑛), the following results hold:

1. For 𝑘 > 2, there is a turnstile streaming algorithm to approximate 𝐹𝑘 (𝑥) up to a constant using𝑂 (𝑛1−2/𝑘 ) bits.
The algorithm has an update time of𝑂 (1).

2. For 𝑘 < 2 and 𝜀 < 1/𝑛𝑐 for a small enough constant 𝑐 , there is a turnstile streaming algorithm that uses the
optimal𝑂 (𝜀−2 log𝑛) bits of space. The algorithm has an update time of𝑂 (log𝑛).

3. There is a turnstile streaming algorithm that uses the optimal𝑂 (𝜀−2 log 1/𝜀 log𝑛) bits of space and outputs an
additive 𝜀∥𝑥 ∥2 approximation to ∥𝑥 ∥∞ = max𝑖 |𝑥 |𝑖 . The algorithm has an𝑂 (log 1/𝜀) update time.

4. There is a turnstile data structure that uses𝑂 (𝑡𝑟 log𝑛 + log2 𝑛) bits of space and a deterministic algorithm that
given any 𝑖 ∈ [𝑛] at the end of the stream, uses the state of the data structure, to obtain an estimate 𝑥𝑖 such that
for all 𝑖 ,

Pr[|𝑥𝑖 − 𝑥𝑖 | > 𝛼 ∥𝑥 ∥2/
√
𝑡] ≤ 2 exp(−𝛼2𝑟 ) + 1/poly(𝑛).

The algorithm has an update time of𝑂 (𝑟 log𝑛).

4.2 Row Arrival Model

Recall that in the row-arrival model of streaming, we obtain rows of the matrix𝐴 one after the other. Using a
small amount of space, we want to solve some problem on the underlying matrix𝐴. In [EKM+23b], we give
fast streaming algorithms to compute coresets for the ℓ∞ subspace approximation problem defined as

min
dim-𝑘 subspaces𝑉

max
𝑖

𝑑 (𝐴𝑖,∗,𝑉 ),

which essentially asks us to find the𝑘-dimensional subspace𝑉 thatminimizes themaximumdistance from the
points in thematrix𝐴. Our streaming coreset construction selects a subset 𝑆 ⊆ [𝑛] of size |𝑆 | = poly(𝑘, log𝑛)
such that for all 𝑘-dimensional subspaces𝑉 ,

max𝑖∈[𝑛] 𝑑 (𝐴𝑖,∗,𝑉 )
poly(𝑘, log𝑛) ≤ max

𝑖∈𝑆
𝑑 (𝐴𝑖,∗,𝑉 ) ≤ max

𝑖∈[𝑛]
𝑑 (𝐴𝑖,∗,𝑉 ) .

Our coreset construction is online, as in whenever a new row arrives, the algorithm chooses to keep the row or
discard it based only on the current value of the coreset. Thus, the algorithm requires only 𝑑 · poly(𝑘, log𝑛)
bits of space to store the rows in the coreset. The above guarantee then implies that an approximate solution
to the ℓ∞ subspace approximation problem on the rows (𝐴𝑖,∗)𝑖∈𝑆 is also an approximate solution to the ℓ∞
subspace approximation problem on the entire matrix𝐴.
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We show applications of our coreset construction for many problem such as ℓ𝑝 subspace approximation,
width estimation, volume estimation, etc. Our work is the first to construct such coresets for general values
of 𝑘 , whereas the previous works studied streaming algorithms only for the specific values such as 𝑘 = 0 and
𝑘 = 1 [AS15].

4.3 Next Steps: Streaming PCA

In the row-arrival model, a problem I am planning to study is the space complexity of approximating the top
singular vector of the matrix𝐴. Suppose that we receive the rows 𝑎1, . . . , 𝑎𝑛 ∈ ℝ𝑑 of the matrix𝐴 and we
want to approximate the top right singular vector of𝐴. We can simply maintain the 𝑑 × 𝑑 matrix∑𝑖 𝑎𝑖𝑎

T
𝑖 in

the stream using𝑂 (𝑑2) bits of space and then the top eigenvector of the PSD matrix∑𝑖 𝑎𝑖𝑎
T
𝑖 is then the top

right singular vector of the matrix𝐴.
Thus, the main question is can we approximate the top eigenvector using 𝑜 (𝑑2) bits of space. In particular,

what can we do using𝑂 (𝑑) bits of space i.e., the space enough to store only𝑂 (1) rows of the matrix𝐴. Price
[Pri22] showed that when the spectral gap 𝜎1(𝐴)/𝜎2(𝐴) ≤ 𝑂 (1), then any streaming algorithm must use
Ω̃(𝑑2) bits of space to approximate the top singular vector whereas when 𝜎1(𝐴)/𝜎2(𝐴) ≥ 𝐶

√︁
log𝑛 log𝑑 ,

then there is a streaming algorithm that uses𝑂 (𝑑) bits of space. We ask:

“Are there reasonable assumptions on the matrix𝐴 or the arrival order that break these lower bounds?”

One assumption that seems to be necessary to obtain low space streaming algorithms is “low coherence” i.e.,
no particular row is important. If a particular row is very important to approximate the top eigenvector, then
a small-space streaming algorithm may miss that row. Over the next few months, we would like to answer the
above question by obtain algorithms that work under reasonable assumptions on the input matrix.

5 The Distributed Setting
Consider the arbitrary partition model. In this setting, there are 𝑠 servers all connected to a coordinator.
The 𝑗-th server holds a matrix𝐴( 𝑗) ∈ ℝ𝑛×𝑑 and the coordinator wants to solve a problem on the matrix
𝐴 = 𝐴(1) + · · · + 𝐴(𝑠). In each round of communication, each of the servers can send a message to the
coordinator and based on all the messages received the coordinator can send a possibly distinct message
to each of the servers. A protocol can use multiple such rounds of communication to solve a problem. The
amount of communication of a protocol is the total number of bits of communication sent/received by the
coordinator.

We [EKM+23a] study the problem of moment estimation and more generally arbitrary function sum
approximation problem. In this problem, the 𝑗-th server holds a non-negative vector 𝑥 ( 𝑗) ∈ ℝ𝑛 and the
coordinator wants to approximate∑𝑖 𝑓 (𝑥𝑖) where 𝑥𝑖 is the 𝑖-th coordinate of the vector 𝑥 = 𝑥 (1) + · · · +𝑥 (𝑠)
and 𝑓 is an arbitrary nonnegative function. If 𝑓 (𝑦) = 𝑦𝑘 , then the coordinator simply wants to approximate
the 𝐹𝑘 moment of vector 𝑥 . We give a two round protocol for this problem when the function 𝑓 is super-
additive and some other properties. To capture the communication complexity of the problem, we define a
parameter 𝑐 𝑓 [𝑠] which is the smallest value that satisfies

𝑓 (𝑦1 + · · · + 𝑦𝑠) ≤
𝑐 𝑓 [𝑠]
𝑠
(
√︁
𝑓 (𝑦1) + · · · +

√︁
𝑓 (𝑦𝑠))2 for all𝑦1, . . . , 𝑦𝑠 ≥ 0.

Our two round protocol uses a total of 𝑂 (𝑐 𝑓 [𝑠] · polylog(𝑛)/𝜀2) bits of communication (excluding the
dependence on other function specific parameters independent of the number of servers 𝑠) and at the end of
the protocol, the coordinator computes a 1+ 𝜀 approximation to∑𝑛

𝑖=1 𝑓 (𝑥𝑖). Specifically, for estimating
∑

𝑖 𝑥
𝑘
𝑖
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for 𝑘 > 2, we can show that 𝑐 𝑓 [𝑠] = 𝑠𝑘−1 and therefore our algorithm uses a total of𝑂 (𝑠𝑘−1 polylog(𝑛)/𝜀2)
bits of communication. This matches the Ω(𝑠𝑘−1/𝜀2) lower bound of [WZ12]. We additionally show a lower
bound of Ω(𝑠𝑘−1/𝜀𝑘 ) bits on the amount of communication that any one round protocol must use therefore
showing that our protocol achieves the best communication bounds using minimum possible rounds.

For general functions 𝑓 satisfying certain properties, we also show an Ω(𝑐 𝑓 [𝑠]/𝜀2) lower bound on the
amount of communication thus showing that our protocol achieves near-optimal communication bounds.

Our protocol crucially uses the “max-stability” property of exponential random variables and we show
that using similar techniques, we can sample from “additively-defined” distributions using a small amount of
communication.
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