Sketching Algorithms and Lower Bounds for Ridge Regression

Proneeth Kacham and David Woodruff Carnegie Mellon University

Introduction

- We study fast algorithms for "Ridge Regression". min $\|Ax - b\|_2^2 + \lambda \|x\|_2^2$ $A \in \mathbb{R}^{n \times d}$ $x = b \in \mathbb{R}^n$

- Linear Regression + l_2 regularization
- Underdetermined Case : n ≤ d
- Optimal $x^* = A^T (AA^T + \lambda I_d)^{-1} b^{n \times 1}$ $n^2 d$ time to compute
- Very slow if n & d are large

(ii) Should be able to compute AS quickly (iii) Should of course be useful downstream Earlier Work for 1-pass algorithms - Chowdhury et al., used subspace embeddings to sketch the matrix A

-
$$\forall x$$
:
 $\| x^T A S \|_2 = (1 \pm \varepsilon) \| x^T A \|_2$

- We know many distributions that satisfy this property:

- Gaussians, SRHT, CountSketch, OSNAP

- As E goes down, m and tas typically increase

- Let $\widetilde{x} = A^{T}(AS(AS)^{T} + \lambda 1)^{T}b$
- Chowdhury et al., showed that if "S" is a $\sqrt{\epsilon \lambda / \|A\|_{2}^{2}}$ subspace embedding, then $\|A\tilde{x} b\|_{2}^{2} + \lambda \|x\|_{2}^{2} \leq (1+\epsilon) \cdot Opt$
- We obtain faster algorithms by requiring weaker guarantee from S:
 Weaker
 S is a 1/2 subspace embedding
 For arbitrary orthonormal matrix V and vec. r:
 (AMM) || V^TSS^TVr r||₂ ≤ √E^λ/σ²/√R ||V||_F||r||₂

Near-Optimality of Sketch Sizes: - Guarantees satisfied by OSNAP with $m = \tilde{O}(\frac{n\sigma^2}{\lambda\epsilon})$ - Can also quickly compute AS - We show near optimality of Sketch Size by reducing from Ridge Regression => AMM - We then prove tight lowerbounds for AMM :

$$\varepsilon - AMM \implies \mathcal{I}(/\varepsilon^2)$$
 rows in sketch.

Thank You