Pseudorandom Hashing for
Space-bounded Computation
with Applications in Streaming

Praneeth Kacham Mikkel Thorup Rasmus Pagh David Woodruff

CMU U. Of Copenhagen U. Of Copenhagen CMU

Main Results

* A generalization of Nisan’s Pseudorandom generator for small
space algorithms

 Has a symmetry property useful for derandomizing some
streaming algorithms

» Tail bounds for CountSketch estimates, estimating ||x|| .,

* Provides a space-vs-time tradeoff: Can speedup extraction of
blocks from the pseudorandom string

* Improves update times of turnstile streaming algorithms

Turnstile Streaming

+ Initialize x < 0 € R?
* Onupdate (i, A) :
e Setx[i] « x[i]+ A
 Answer gqueries about x at the
end of the stream using small

space

« What was ||x||, or x[i] or
[1xll5 -

 Update time: Time to
process a new update

X

Updates: (i, A) (i, Ay) ...

(s Ay)

Our Results

Improving Update Times

REOEDNET

» For p > 2, can approximate F(x) up to O,(1) using an O(d'=%P) space
algorithm with constant update time

e Derandomizing [Andoni17]

 Optimal space for linear sketches

» For0 <p <2, 1= ¢ approximation to F,(x) using O(e2log d) bits of
space and an update time of O(log d) (requires € < 1/d°)

 Derandomizing [KNW10] which has an update time of
O(log? d - poly(log log d)) in this regime

* Optimal space for any streaming algorithm

Our Results

Derandomizing CountSketch via Symmetry

* There is a streaming algorithm such that at the end, for any 1 we
can compute Xx[i] such that fora < 1

[1x]l

[

Pr[| x[i] — z[i]| > «] < 2exp(—a’r) + 1/poly(d)

* Obtained by derandomizing [Minton and Price 14]

. The algorithm uses O(trlog(d) + log? d) bits of space

 We use symmetry to reorder the blocks of the pseudorandom
string in the analysis

Our Results

Estimating ||x]||

» An algorithm and a tight lower bound to estimate ||x||,, up to
an additive &||x||, using O(e > log d log 1/¢) bits

* Doesn’t require the new PRG

* Using the tight guarantees for CountSketch, an algorithm that
uses O(e 2 log d) bits if ||x]|. = O|x][»).

 Symmetry of PRG maybe helpful to get more such results!

Pseudorandom Generators

 Pseudorandom generators (PRGs) take a uniform random string

r (“seed”) of length £ and use it to create a string r’ of length
m>t

 Goal: Make the string r’ look like a length m uniform random
string

 In this talk: PRGs that “fool” space-bounded algorithms

A Picture

Close in TV dist.

_L

Space-Bounded Algorithms

e Uses w bits to store its state
 Makes a single pass (from left to right) over the random bits
* Updates its state while streaming through the bits

* The state updates can be arbitrarily complicated

An Example

« Consider t-bit integers ay, ..., a,,

 Algorithm initializes state s <« 0O

e Streaming through the random bits, it updates
S «<— S + (_1)rilai

e This is a space t + log, m algorithm

Nisan’s PRG

e Nisan, in 1990, gave a PRG for space-bounded algorithms using
pairwise independent hash functions

e Thereis % = {h: {0,1} = {0,1}%} such thateach h € ¥
can be identified using O(¢) bits

« Can sample a random hash function from # using O(¢’) random
bits

Construction of Nisan’s PRG

¢ Letr ~ {O,l}fandhl, ..., ~ # = seed length of O(¢ - £)

» PRG(r, h{, h,) is defined as follows

a

r hy(r) Level 2
r’ = r h(r) ho(r) h,(h(r)) Level 1

« ' =PRG(r,hy, ..., h) is defined similarly with 7 levels

Guarantees of Nisan’s PRG

e« r'hasalengthm =2"-¢

« Nisan shows that if 7, w < ¢ - £ for a constant ¢, then the PRG
fools a w space algorithm

 If w = CQ(log d) and the algorithm reads poly(d) random bits =
seed length of O(wlog d) bits

« Can compute any block in time required to apply 7 hash functions
from {0,1}* — {0,1}¢

 Fool larger space = ¢ needs to be large and the evaluation
IS slow

Symmetrizing the distribution

« We use two hash functions hl.(o), hl.(l) for each level

7

0)
hOr)

.

ROBOw) [| ROBO@)

« Switching hl.(o) and hl.(l) amounts to reordering blocks

(1)
h, " (r)
hOmOr)) h{V(hD(r))

Level 2

Level 1

* Pseudorandom string can be reordered in specific ways without

changing the distribution!

Increasing the Branching Factor

« Have b hash functions for each level instead of just 2

/v\
/N RN /N

* Low depth:

e Faster to compute any particular block

« Needs more space to store more hash functions X

Important Special Case

» In all our applications, we fool O(log d) space algorithms that use
poly(d) random bits

. Branching factor b = d'*:
« Time: O(u) hash function evaluations per block
. Space: O(d’""1og” d) bits if using Simple Tabulation hashing

 Hash function evaluation in O(u) time in WordRAM model using
simple tabulation hashing

« u = O(logd) recovers Nisan’s parameters

Summary of PRGs

* Proof is even simpler than Nisan’s original proof!

« Slight but important modification to make sure that the large
branching factor doesn’t mess up the analysis

 Symmetry allows the analysis to work with a different order of
blocks

Recipe for Constructing Streaming Algorithms

e Use linear sketches!

 Design an s X d sketching matrix § with each of its columns
sampled independently from some distribution

¢« s K d

« Show that there is some function f such that f(Sx) recovers the
statistic we care about

o Fp moments (0 < p < 2): S is made of p-stable random vars.

Streaming via Linear Sketch

Initialize y < 0O

On update (i, A) to x

» Retrieve S, - the i-th column of §
» Updatey < y+ A - S,

y = Sx at all points!

How would we store the huge random matrix $ though?

Black Box Reduction using PRGs

 PRGs fooling Small Space = Derandomize Turnstile Streaming
Algorithms

* Indyk, in 2000, gave a simple proof of this

» Construct an “analysis algo” that generates S, using i-th
block of bits and computes vector y on the fly

» y’s distribution is preserved!
» Space complexity: space for y + “space for seed”

» O(log d) factor space blow up in general

 Symmetry allows to “look ahead” in the reductions

Reducing space blowup

* Do we need to preserve the full distribution of y?

« We only care about preserving f(y)

* If we can compute f(y) on the fly, we have to fool a “smaller”
space algorithm

* For a lot of algorithms, we can do this and hence only need to
fool O(log d) space algorithms even when y is large

 No factor O(log d) space blow up to store the seed!

* Bulk of the work in our proofs is showing that PRG needs to
fool an O(log d) space algo

Thank you!

