Pseudorandom Hashing for Space-bounded Computation with Applications in Streaming

Praneeth KachamMikkel ThorupRasmus PaghDavid WoodruffCMUU. Of CopenhagenU. Of CopenhagenCMU

Main Results

- A generalization of Nisan's Pseudorandom generator for small space algorithms
- Has a symmetry property useful for derandomizing some streaming algorithms
 - Tail bounds for CountSketch estimates, estimating $||x||_{\infty}$
- Provides a space-vs-time tradeoff: Can speedup extraction of blocks from the pseudorandom string
 - Improves **update times** of turnstile streaming algorithms

Turnstile Streaming

- Initialize $x \leftarrow 0 \in \mathbb{R}^d$
- On update (i, Δ) :
 - Set $x[i] \leftarrow x[i] + \Delta$
- Answer queries about x at the end of the stream using small space
 - What was $||x||_{\infty}$ or x[i] or $||x||_2 \dots$
- **Update time**: Time to process a new update

x Updates: (i_1, Δ_1) (i_2, Δ_2) ... (i_m, Δ_m)

Our Results

Improving Update Times

- $F_p(x) = \sum_i |x[i]|^p$
- For p>2, can approximate $F_p(x)$ up to $O_p(1)$ using an $\tilde{O}(d^{1-2/p})$ space algorithm with ${\bf constant}$ update time
 - Derandomizing [Andoni17]
 - Optimal space for linear sketches
- For $0 , <math>1 \pm \varepsilon$ approximation to $F_p(x)$ using $O(\varepsilon^{-2} \log d)$ bits of space and an update time of $O(\log d)$ (requires $\varepsilon < 1/d^c$)
 - Derandomizing [KNW10] which has an update time of $O(\log^2 d \cdot poly(\log \log d))$ in this regime
 - Optimal space for **any** streaming algorithm

Our Results

Derandomizing CountSketch via Symmetry

• There is a streaming algorithm such that at the end, for any i we can compute $\hat{x}[i]$ such that for $\alpha \leq 1$

$$\Pr[|x[i] - \hat{x}[i]| > \alpha \frac{||x||_2}{\sqrt{t}}] \le 2 \exp(-\alpha^2 r) + 1/\text{poly}(d)$$

- Obtained by derandomizing [Minton and Price 14]
- The algorithm uses $O(tr \log(d) + \log^2 d)$ bits of space
- We use symmetry to reorder the blocks of the pseudorandom string in the analysis

Our Results

Estimating $||x||_{\infty}$

- An algorithm and a tight lower bound to estimate $||x||_{\infty}$ up to an additive $\varepsilon ||x||_2$ using $O(\varepsilon^{-2} \log d \log 1/\varepsilon)$ bits
 - **Doesn't** require the new PRG
- Using the tight guarantees for CountSketch, an algorithm that uses $O(\varepsilon^{-2} \log d)$ bits if $||x||_{\infty} = \Theta(||x||_{2})$.
 - Symmetry of **PRG** maybe helpful to get more such results!

Pseudorandom Generators

- Pseudorandom generators (PRGs) take a uniform random string r ("seed") of length ℓ and use it to create a string r' of length $m > \ell$
- Goal: Make the string r' look like a length m uniform random string
- In this talk: PRGs that "fool" space-bounded algorithms

A Picture

Space-Bounded Algorithms

- Uses *w* bits to store its state
- Makes a single pass (from left to right) over the random bits
- Updates its state while streaming through the bits
- The state updates can be arbitrarily complicated

An Example

- Consider *t*-bit integers a_1, \ldots, a_m
- Algorithm initializes state $s \leftarrow 0$
- Streaming through the random bits, it updates

$$s \leftarrow s + (-1)^{\mathbf{r}'_i} a_i$$

• This is a space $t + \log_2 m$ algorithm

Nisan's PRG

- Nisan, in 1990, gave a PRG for space-bounded algorithms using pairwise independent hash functions
- There is $\mathscr{H} = \{h : \{0,1\}^{\ell} \to \{0,1\}^{\ell}\}$ such that each $h \in \mathscr{H}$ can be identified using $O(\ell)$ bits
- Can sample a random hash function from ${\mathscr H}$ using $O({\mathscr C})$ random bits

Construction of Nisan's PRG

- Let $\mathbf{r} \sim \{0,1\}^{\ell}$ and $\mathbf{h}_1, \dots, \mathbf{h}_t \sim \mathcal{H} \Rightarrow$ seed length of $O(t \cdot \ell)$
- $PRG(r, h_1, h_2)$ is defined as follows

• $\mathbf{r}' = PRG(\mathbf{r}, \mathbf{h}_1, \dots, \mathbf{h}_t)$ is defined similarly with *t* levels

Guarantees of Nisan's PRG

- $\mathbf{r'}$ has a length $m = 2^t \cdot \ell$
- Nisan shows that if $t, w \leq c \cdot \ell$ for a constant c, then the PRG fools a w space algorithm
- If $w = \Omega(\log d)$ and the algorithm reads poly(d) random bits \Rightarrow seed length of $O(w \log d)$ bits
- Can compute any block in time required to apply t hash functions from $\{0,1\}^{\ell} \to \{0,1\}^{\ell}$
 - Fool larger space ⇒ ℓ needs to be large and the evaluation is slow

Symmetrizing the distribution

• We use **two** hash functions $h_i^{(0)}, h_i^{(1)}$ for each level

• Switching $\boldsymbol{h}_{i}^{(0)}$ and $\boldsymbol{h}_{i}^{(1)}$ amounts to reordering blocks

 Pseudorandom string can be reordered in specific ways without changing the distribution!

Increasing the Branching Factor

• Have b hash functions for each level instead of just 2

- Low depth:
 - Faster to compute any particular block
 - Needs more space to store more hash functions X

Important Special Case

- In all our applications, we fool O(log d) space algorithms that use poly(d) random bits
- Branching factor $b = d^{1/u}$:
 - **Time**: O(u) hash function evaluations per block
 - **Space**: $O(d^{O(1/u)} \log^2 d)$ bits if using Simple Tabulation hashing
- Hash function evaluation in O(u) time in WordRAM model using simple tabulation hashing
- $u = O(\log d)$ recovers Nisan's parameters

Summary of PRGs

- Proof is even simpler than Nisan's original proof!
- Slight but important modification to make sure that the large branching factor doesn't mess up the analysis
- Symmetry allows the analysis to work with a different order of blocks

Recipe for Constructing Streaming Algorithms

- Use linear sketches!
- Design an $s \times d$ sketching matrix S with each of its columns sampled independently from some distribution
 - $s \ll d$
- Show that there is some function f such that f(Sx) recovers the statistic we care about
 - F_p moments (0): <math>S is made of p-stable random vars.

Streaming via Linear Sketch

- Initialize $y \leftarrow 0$
- On update (i, Δ) to x
 - Retrieve S_{st_i} the i-th column of S
 - Update $y \leftarrow y + \Delta \cdot S_{*_i}$
- y = Sx at all points!
- How would we store the **huge** random matrix S though?

Black Box Reduction using PRGs

- PRGs fooling Small Space ⇒ Derandomize Turnstile Streaming Algorithms
 - Indyk, in 2000, gave a simple proof of this
 - Construct an "analysis algo" that generates S_{*_i} using *i*-th block of bits and computes vector *y* on the fly
 - *y*'s distribution is preserved!
- Space complexity: space for *y* + "space for seed"
 - $O(\log d)$ factor space blow up in general
- Symmetry allows to "look ahead" in the reductions

Reducing space blowup

- Do we need to preserve the full distribution of y?
- We only care about preserving f(y)
- If we can compute $f(\mathbf{y})$ on the fly, we have to fool a "smaller" space algorithm
- For a lot of algorithms, we can do this and hence only need to fool $O(\log d)$ space algorithms even when y is large
 - No factor $O(\log d)$ space blow up to store the seed!
 - Bulk of the work in our proofs is showing that PRG needs to fool an $O(\log d)$ space algo

Thank you!