
Pseudorandom Hashing for
Space-bounded Computation
with Applications in Streaming
Praneeth Kacham

CMU

Mikkel Thorup

U. Of Copenhagen

Rasmus Pagh

U. Of Copenhagen

David Woodruff

CMU

• A generalization of Nisan’s Pseudorandom generator for small
space algorithms

• Has a symmetry property useful for derandomizing some
streaming algorithms

• Tail bounds for CountSketch estimates, estimating

• Provides a space-vs-time tradeoff: Can speedup extraction of
blocks from the pseudorandom string

• Improves update times of turnstile streaming algorithms

∥x∥∞

Main Results

• Initialize

• On update

• Set

• Answer queries about at the
end of the stream using small
space

• What was or or
 …

• Update time: Time to
process a new update

x ← 0 ∈ ℝd

(i, Δ) :

x[i] ← x[i] + Δ

x

∥x∥∞ x[i]
∥x∥2

Turnstile Streaming

x Updates: (i1, Δ1) (i2, Δ2) … (im, Δm)

•

• For , can approximate up to using an space
algorithm with constant update time

• Derandomizing [Andoni17]

• Optimal space for linear sketches

• For , approximation to using bits of
space and an update time of (requires)

• Derandomizing [KNW10] which has an update time of
 in this regime

• Optimal space for any streaming algorithm

Fp(x) = ∑
i

|x[i] |p

p > 2 Fp(x) Op(1) Õ(d1−2/p)

0 < p < 2 1 ± ε Fp(x) O(ε−2 log d)
O(log d) ε < 1/dc

O(log2 d ⋅ poly(log log d))

Improving Update Times
Our Results

• There is a streaming algorithm such that at the end, for any we
can compute such that for

• Obtained by derandomizing [Minton and Price 14]

• The algorithm uses bits of space

• We use symmetry to reorder the blocks of the pseudorandom
string in the analysis

i
̂x[i] α ≤ 1

O(tr log(d) + log2 d)

Derandomizing CountSketch via Symmetry
Our Results

Pr[|x[i] − ̂x[i] | > α
∥x∥2

t
] ≤ 2 exp(−α2r) + 1/poly(d)

• An algorithm and a tight lower bound to estimate up to
an additive using bits

• Doesn’t require the new PRG

• Using the tight guarantees for CountSketch, an algorithm that
uses bits if .

• Symmetry of PRG maybe helpful to get more such results!

∥x∥∞
ε∥x∥2 O(ε−2 log d log 1/ε)

O(ε−2 log d) ∥x∥∞ = Θ(∥x∥2)

Estimating ∥x∥∞

Our Results

• Pseudorandom generators (PRGs) take a uniform random string
 (“seed”) of length and use it to create a string of length

• Goal: Make the string look like a length uniform random
string

• In this talk: PRGs that “fool” space-bounded algorithms

r ℓ r′￼

m > ℓ

r′￼ m

Pseudorandom Generators

A Picture

r ∼ Unif({0,1}m)

Algorithm 𝒜 𝒜(r)

r ∼ Unif({0,1}ℓ) r′￼= PRG(r) ∈ {0,1}m

Algorithm 𝒜 𝒜(r′￼)

Close in TV dist.

• Uses bits to store its state

• Makes a single pass (from left to right) over the random bits

• Updates its state while streaming through the bits

• The state updates can be arbitrarily complicated

w

Space-Bounded Algorithms

An Example
r′￼1 r′￼2 r′￼m

• Consider -bit integers

• Algorithm initializes state

• Streaming through the random bits, it updates

• This is a space algorithm

t a1, …, am

s ← 0

s ← s + (−1)r′￼iai

t + log2 m

• Nisan, in 1990, gave a PRG for space-bounded algorithms using
pairwise independent hash functions

• There is = such that each
can be identified using bits

• Can sample a random hash function from using random
bits

ℋ {h : {0,1}ℓ → {0,1}ℓ} h ∈ ℋ
O(ℓ)

ℋ O(ℓ)

Nisan’s PRG

• Let seed length of

• is defined as follows

r ∼ {0,1}ℓ and h1, …, ht ∼ ℋ ⇒ O(t ⋅ ℓ)

PRG(r, h1, h2)

Construction of Nisan’s PRG

• is defined similarly with levelsr′￼ = PRG(r, h1, …, ht) t

r

r

r h1(r) h2(r) h1(h2(r))

h2(r)

Level 1

Level 2

r′￼:=

• has a length

• Nisan shows that if for a constant , then the PRG
fools a space algorithm

• If and the algorithm reads random bits
seed length of bits

• Can compute any block in time required to apply hash functions
from

• Fool larger space needs to be large and the evaluation
is slow

r′￼ m = 2t ⋅ ℓ

t, w ≤ c ⋅ ℓ c
w

w = Ω(log d) poly(d) ⇒
O(w log d)

t
{0,1}ℓ → {0,1}ℓ

⇒ ℓ

Guarantees of Nisan’s PRG

• We use two hash functions for each level

• Switching and amounts to reordering blocks

• Pseudorandom string can be reordered in specific ways without
changing the distribution!

h(0)
i , h(1)

i

h(0)
i h(1)

i

Symmetrizing the distribution

r

h(0)
2 (r)

h(0)
1 (h(0)

2 (r)) h(1)
1 (h(1)

2 (r))

h(1)
2 (r)

h(1)
1 (h(0)

2 (r)) h(0)
1 (h(1)

2 (r)) Level 1

Level 2

• Have hash functions for each level instead of just 2

• Low depth:

• Faster to compute any particular block ✅

• Needs more space to store more hash functions ❌

b

Increasing the Branching Factor

• In all our applications, we fool space algorithms that use
 random bits

• Branching factor :

• Time: hash function evaluations per block

• Space: bits if using Simple Tabulation hashing

• Hash function evaluation in time in WordRAM model using
simple tabulation hashing

• recovers Nisan’s parameters

O(log d)
poly(d)

b = d1/u

O(u)

O(dO(1/u) log2 d)

O(u)

u = O(log d)

Important Special Case

• Proof is even simpler than Nisan’s original proof!

• Slight but important modification to make sure that the large
branching factor doesn’t mess up the analysis

• Symmetry allows the analysis to work with a different order of
blocks

Summary of PRGs

• Use linear sketches!

• Design an sketching matrix with each of its columns
sampled independently from some distribution

•

• Show that there is some function such that recovers the
statistic we care about

• moments (): is made of -stable random vars.

s × d S

s ≪ d

f f(Sx)

Fp 0 < p ≤ 2 S p

Recipe for Constructing Streaming Algorithms

• Initialize

• On update to

• Retrieve - the -th column of

• Update

• at all points!

• How would we store the huge random matrix though?

y ← 0

(i, Δ) x

S*i i S

y ← y + Δ ⋅ S*i

y = Sx

S

Streaming via Linear Sketch

• PRGs fooling Small Space Derandomize Turnstile Streaming
Algorithms

• Indyk, in 2000, gave a simple proof of this

• Construct an “analysis algo” that generates using -th
block of bits and computes vector on the fly

• ’s distribution is preserved!

• Space complexity: space for + “space for seed”

• factor space blow up in general

• Symmetry allows to “look ahead” in the reductions

⇒

S*i i
y

y

y

O(log d)

Black Box Reduction using PRGs

• Do we need to preserve the full distribution of ?

• We only care about preserving

• If we can compute on the fly, we have to fool a “smaller”
space algorithm

• For a lot of algorithms, we can do this and hence only need to
fool space algorithms even when is large

• No factor space blow up to store the seed!

• Bulk of the work in our proofs is showing that PRG needs to
fool an space algo

y

f(y)

f(y)

O(log d) y

O(log d)

O(log d)

Reducing space blowup

Thank you!

